How Errors from Server Side are Handled On Open Event Frontend

This blog article will illustrate how the various error or status codes are handled  in  Open Event Frontend, and how the appropriate response is generated corresponding to those error codes. Open Event Frontend, relies on Open Event Server for all server operations. Open Event Server exposes  a well documented JSON:API Spec Compliant REST API. The clients using the api primarily interact with it using GET, POST , PATCH and DELETE requests. And thus for each request the API returns corresponding data as response along with it’s status code.

For instance whenever the app opens, for the landing page, all the events are fetched by making a GET request to the end point v1/events. If the request is successful and events data is returned, the status code is 200 which stands for OK in the http standard set by IANA.

Fig 1: Screenshot of google chrome developer consoles’ networking tab while making a request.

Since Open Event server is compliant with JSON:API Spec, to quote it’s official documentation, “Error objects MUST be returned as an array keyed by errors in the top level of a JSON API document.” Thus whenever there is an error, or the request is unsuccessful due to a variety of reasons, the server has a predefined format to convey the information to the front end.

The process is illustrated by the reset password form on open event frontend. When a user forgets his password, he/she has the option to reset it, using his email address. Thus the form just takes in the email address of the user and makes a POST request to the reset-password API endpoint of the server.

  • Once the request is made there are 3 possibilities (check references for error code significance):
    The request is successful and a status code of 200 is returned.
  • The email address user entered doesn’t exists and no record is found in the database. 422 status code should be returned.
  • The server is down, or the request is invalid (something unexpected has occurred). In all such scenarios error code 404 should be returned.

this.get('loader')
         .post('auth/reset-password', payload)
         .then(() => {
           this.set('successMessage', this.l10n.t('Please go to the link sent to your     

           email to reset your password'));
         })
         .catch(reason => {
           if (reason && reason.hasOwnProperty('errors') && reason.errors[0].status

               === 422) {
             this.set('errorMessage', this.l10n.t('No account is registered with this

                      email address.'));
           } else {
             this.set('errorMessage', this.l10n.t('An unexpected error occurred.'));
           }
         })
         .finally(()=> {
           this.set('isLoading', false);
         }
         );
Figure 2 : The reset password UI

Thus as mentioned in the JSON:API docs, the errors property is expected to contain the status code and error message(optional) , which ember handles via the the catch block. The catch block is executed whenever the response from the request is not successful. The contents of the response are present in the reason property. If the status of the error is 422, the corresponding message is stored inside the errorMessage property of the component which is further used to display the alert by rendering an error block on the forgot password form.

In case there is no error, the errorMessage is undefined, and the error block is not rendered at all. In case of any other unexpected error, the standard text is displayed by initialising the errorMessage property to it.

Resources

How the Form Mixin Enhances Validations in Open Event Frontend

This blog article will illustrate how the various validations come together in  Open Event Frontend, in a standard format, strongly reducing the code redundancy in declaring validations. Open Event Frontend, offers high flexibility in terms of validation options, and all are stored in a convenient object notation format as follows:

getValidationRules() {
return {
  inline : true,
  delay  : false,
  on     : 'blur',
  fields : {
    identification: {
      identifier : 'email',
      rules      : [
        {
          type   : 'empty',
          prompt : this.l10n.t('Please enter your email ID')
        },
        {
          type   : 'email',
          prompt : this.l10n.t('Please enter a valid email ID')
        }
      ]
    },
    password: {
      identifier : 'password',
      rules      : [
        {
          type   : 'empty',
          prompt : this.l10n.t('Please enter your password')
        }
      ]
    }
  }
};
}

Thus the validations of a form are stored as objects, where the  identifier attribute determines which field to apply the validation conditions to. The rules array contains all the rules to be applied to the determined object. Within rules, the type represents the kind of validation, whereas the prompt attribute determines what message shall be displayed in case there is a violation of the validation rule.

 

NOTE: In case an identifier is not specified, then the name of the rule object is itself considered as the identifier.

These validations are in turn implemented by the FormMixin. The various relevant sections of the mixin will be discussed in detail. Please check references for complete source code of the mixin.

getForm() {
return this.get($form);
}

The getForm function returns the calling component’s entire form object on which the validations are to be applied.

onValid(callback) {
this.getForm().form('validate form');
if (this.getForm().form('is valid')) {
  callback();
}
}

The onValid function serves as the boundary level function, and is used to specify what should happen when the validation is successful. It expects a function object as i’s argument. It makes use of the getForm() function to retrieve the form and using semantic UI, determines if all the validations have been successful. In case they have, it calls the callback method passed down to it as the argument.

Next transitioning into the actual implementation, certain behavioral traits of the validations are controlled by the two global variables autoScrollToErrors and autoScrollSpeed. The former is a boolean, which is set to true if the application is designed in such a way that once the user presses the submit button and a validation fails, the browser scrolls to the first field whose validation failed with a speed specified by the latter.

Next, comes the heart of the mixin. Since it needs to be continuously determined if a field’s validation has failed, the entire logic of checking is placed inside a debounce call which is supported by ember to continuously execute a function with a gap of a certain specified time (400 ms in this case). Since the validity can be checked only after all the fields have rendered, the debounce call is placed inside a didRender call. The didRender call ensures that any logic inside it is executed only after all the elements of the relevant component have been rendered and are a part of the DOM.

didRender() {
. . .
debounce(this, () => {
  const defaultFormRules = {
    onFailure: formErrors => {
      if (this.autoScrollToErrors) {
        // Scroll to the first error message
        if (formErrors.length > 0) {
          $('html,body').animate({
            scrollTop: this.$(`div:contains('${formErrors[0]}')`).offset().top
          }, this.autoScrollSpeed);
        }
      }
    }
  };
}, 400); . . .}

 

onFailure is an ES6 syntax function, which takes all the form errors as its arguments. And in case the autoScrollToErrors global variable is set to true, it checks if there are any errors or the length of the formErrors array is more than 0. In case there are errors, it makes a call to animate callback, and scrolls to the very first field which has an error with the speed defined by the previously discussed global autoScrollSpeed . The fact that the very first field is selected for scrolling off to, is ensured by the index 0 specified (formErrors[0]). Thus role of the mixin is to continuously check for any validations and in case there are, scroll to them.

Resources

How App Social Links are specified in Open Event Frontend

This blog article will illustrate how the various social links are specified in the the footer of Open Event Frontend, using the settings API. Open Event Frontend, offers high flexibility to the admins regarding the settings of the App, and hence the media links are not hard coded, and can be changed easily via the admin settings panel.

The primary end point of Open Event API with which we are concerned with for fetching the settings  for the app is

GET /v1/settings

The model for settings has the following fields which concern the social links.

 googleUrl              : attr('string'),
 githubUrl              : attr('string'),
 twitterUrl             : attr('string')

Next we define them as segmented URL(s) so that they can make use of the link input widget.

segmentedTwitterUrl    : computedSegmentedLink.bind(this)('twitterUrl'),
 segmentedGoogleUrl     : computedSegmentedLink.bind(this)('googleUrl'),
 segmentedGithubUrl     : computedSegmentedLink.bind(this)('githubUrl'),

Now it is required for us to fetch the data from the API, by making the corresponding call to the API. Since the footer is present in every single page of the app, it is necessary that we make the call from the application route itself. Hence we add the following to the application route modal.

socialLinks: this.get('store').queryRecord('setting', {
})

Next we need to iterate over these social links, and add them to the footer as per their availability.So we will do so by first passing the model to the footer component, and then iterating over it in footer.hbs

{{footer-main socialLinks=model.socialLinks footerPages=footerPages}}


And thus we have passed the socialLinks portion of the model, under the alias socialLinks.Next, we iterate over them and each time check, if the link exists before rendering it.

<div class="three wide column">
     <div class="ui inverted link list">
       <strong class="item">{{t 'Connect with us'}}</strong>
       {{#if socialLinks.supportUrl}}
         <a class="item" href="{{socialLinks.supportUrl}}" target="_blank" rel="noopener noreferrer">
           <i class="info icon"></i> {{t 'Support'}}
         </a>
       {{/if}}
       {{#if socialLinks.facebookUrl}}
         <a class="item" href="{{socialLinks.facebookUrl}}" target="_blank" rel="noopener noreferrer">
           <i class="facebook f icon"></i> {{t 'Facebook'}}
         </a>
       {{/if}}
       {{#if socialLinks.youtubeUrl}}
         <a class="item" href="{{socialLinks.youtubeUrl}}" target="_blank" rel="noopener noreferrer">
           <i class="youtube icon"></i> {{t 'Youtube'}}
         </a>
       {{/if}}
       {{#if socialLinks.googleUrl}}
         <a class="item" href="{{socialLinks.googleUrl}}" target="_blank" rel="noopener noreferrer">
           <i class="google plus icon"></i> {{t 'Google +'}}
         </a>
       {{/if}}
     </div>
   </div>

Thus all the links in the app are easily manageable, from the admin settings menu, without the need of hard coding them. This approach also, makes it easy to preserve the configuration in a central location.

Resources

Implementing Session and Speaker Creation From Event Panel In Open Event Frontend

Open-Event Front-end uses Ember data for handling Open Event Orga API which abides by JSON API specs. It allows the user to manage the event using the event panel of that event. This panel lets us create or update sessions & speakers. Each speaker must be associated with a session, therefore we save the session before saving the speaker.
In this blog we will see how to Implement the session & speaker creation via event panel. Lets see how we implemented it?

Passing the session & speaker models to the form
On the session & speaker creation page we need to render the forms using the custom form API and create new speaker and session entity. We create a speaker object here and we pass in the relationships for event and the user to it, likewise we create the session object and pass the event relationship to it.

These objects along with form which contains all the fields of the custom form, tracks which is a list of all the tracks & sessionTypes which is a list of all the session types of the event is passed in the model.

return RSVP.hash({
  event : eventDetails,
  form  : eventDetails.query('customForms', {
    'page[size]' : 50,
    sort         : 'id'
  }),
  session: this.get('store').createRecord('session', {
    event: eventDetails
  }),
  speaker: this.get('store').createRecord('speaker', {
    event : eventDetails,
    user  : this.get('authManager.currentUser')
  }),
  tracks       : eventDetails.query('tracks', {}),
  sessionTypes : eventDetails.query('sessionTypes', {})
});

We bind the speaker & session object to the template which has contains the session-speaker component for form validation. The request is only made if the form gets validated.

Saving the data

In Open Event API each speaker must be associated with a session, i.e we must define a session relationship for the speaker. To accomplish this we first save the session into the server and once it has been successfully saved we pass the session as a relation to the speaker object.

this.get('model.session').save()
  .then(session => {
    let speaker = this.get('model.speaker');
    speaker.set('session', session);
    speaker.save()
      .then(() => {
        this.get('notify').success(this.l10n.t('Your session has been saved'));
        this.transitionToRoute('events.view.sessions', this.get('model.event.id'));
      });
  })

We save the objects using the save method. After the speakers and sessions are save successfully we notify the user by showing a success message via the notify service.

Thank you for reading the blog, you can check the source code for the example here.

Resources

Implementing “Change Password” API in Open Event Frontend

In Open Event Frontend, users can change the password for their account in the ‘Settings’ section. Changing one’s password will require the previous password of the same account which ensures the security. To implement change in password API, we created a REST endpoint here since the password cannot be included in the user model and thereby exposed to the client.

There is also a check on the server side of the old password. Thus, if the old password entered matches the one on the server, the post is successful and the server saves the new password. We achieve this as follows:

We have a change password form located at ‘settings/change-password’, which contains three input fields for old password, new password and confirm new password.

On submitting the form, we pass the action from the component to the controller.

Components consist of two parts: a template written in Handlebars, and a source file written in JavaScript that defines the component’s behavior.

Controllers behave like a specialized type of Component that is rendered by the router when entering a Route.

We could have handled this action in component itself. But, Ember JS’ main principle is DDAU i.e data down actions up. That is the main reason why we handle the action in out controller.

submit() {
      this.onValid(() => {
      this.sendAction('changePassword', this.getProperties('passwordCurrent', 'passwordNew'));
      });
}

Thus, we handle the action in our controller as follows:

 changePassword(passwordData) {
      this.set('isLoading', true);
      let payload = {
        'data': {
          'old-password' : passwordData.passwordCurrent,
          'new-password' : passwordData.passwordNew
        }
      };
      this.get('loader')
        .post('/auth/change-password', payload)
        .then(() => {
          this.get('notify').success(this.l10n.t('Password updated successfully'));
        })
        .catch(error => {
          if (error.error) {
            this.get('notify').error(this.l10n.t(error.error));
          } else {
            this.get('notify').error(this.l10n.t('Unexpected error. Password did not change.'));
          }
        })
        .finally(() => {
          this.set('isLoading', false);
          this.setProperties({ 'passwordCurrent': '', 'passwordNew': '', 'passwordRepeat': '' });
        });
    }

Here, we are getting the old password and the new password passed from the form and making a POST to the endpoint:

v1/auth/change-password

If the old password check goes successful on the server side, the server returns a successful response:

{ 
 "email": "example@example.com",
 "id": "1",
 "name": "example",
 "password-changed": true
}

Thus, the user can change password in Open Event Frontend.
Resources: Docs on loader service in Ember JS

Creating Dynamic Forms Using Custom-Form API in Open Event Front-end

In Open Event Front-end allows the the event creators to customise the sessions & speakers forms which are implemented on the Orga server using custom-form API. While event creation the organiser can select the forms fields which will be placed in the speaker & session forms.

In this blog we will see how we created custom forms for sessions & speakers using the custom-form API. Lets see how we did it.

Retrieving all the form fields

Each event has custom form fields which can be enabled on the sessions-speakers page, where the organiser can include/exclude the fields for speakers & session forms which are used by the organiser and speakers.

return this.modelFor('events.view').query('customForms', {});

We pass return the result of the query to the new session route where we will create a form using the forms included in the event.

Creating form using custom form API

The model returns an array of all the fields related to the event, however we need to group them according to the type of the field i.e session & speaker. We use lodash groupBy.

allFields: computed('fields', function() {
  return groupBy(this.get('fields').toArray(), field => field.get('form'));
})

For session form we run a loop allFields.session which is an array of all the fields related to session form. We check if the field is included and render the field.

{{#each allFields.session as |field|}}
  {{#if field.isIncluded}}
    <div class="field">
      <label class="{{if field.isRequired 'required'}}" for="name">{{field.name}}</label>
      {{#if (or (eq field.type 'text') (eq field.type 'email'))}}
        {{#if field.isLongText}}
          {{widgets/forms/rich-text-editor textareaId=(if field.isRequired (concat 'session_' field.fieldIdentifier '_required'))}}
        {{else}}
          {{input type=field.type id=(if field.isRequired (concat 'session_' field.fieldIdentifier '_required'))}}
        {{/if}}
      {{/if}}
    </div>
  {{/if}}
{{/each}}

We also use a unique id for all the fields for form validation. If the field is required we create a unique id as `session_fieldName_required` for which we add a validation in the session-speaker-form component. We also use different components for different types of fields eg. for a long text field we make use of the rich-text-editor component.

Thank you for reading the blog, you can check the source code for the example here.

Resources

Keeping Order of tickets in Event Wizard in Sync with API on Open Event Frontend

This blog article will illustrate how the various tickets are stored and displayed in order the event organiser decides  on  Open Event Frontend and also, how they are kept in sync with the backend.

First we will take a look at how the user is able to control the order of the tickets using the ticket widget.

{{#each tickets as |ticket index|}}
  {{widgets/forms/ticket-input ticket=ticket
  timezone=data.event.timezone
  canMoveUp=(not-eq index 0)
  canMoveDown=(not-eq ticket.position (dec
  data.event.tickets.length))
  moveTicketUp=(action 'moveTicket' ticket 'up')
  moveTicketDown=(action 'moveTicket' ticket 'down')
  removeTicket=(confirm 'Are you sure you  wish to delete this 
  ticket ?' (action 'removeTicket' ticket))}}
{{/each}}

The canMoveUp and canMoveDown are dynamic properties and are dependent upon the current positions of the tickets in the tickets array.  These properties define whether the up or down arraow or both should be visible alongside the ticket to trigger the moveTicket action.

There is an attribute called position in the ticket model which is responsible for storing the position of the ticket on the backend. Hence it is necessary that the list of the ticket available should always be ordered by position. However, it should be kept in mind, that even if the position attribute of the tickers is changed, it will not actually change the indices of the ticket records in the array fetched from the API. And since we want the ticker order in sync with the backend, i.e. user shouldn’t have to refresh to see the changes in ticket order, we are going to return the tickets via a computed function which sorts them in the required order.

tickets: computed('data.event.tickets.@each.isDeleted', 'data.event.tickets.@each.position', function() {
   return this.get('data.event.tickets').sortBy('position').filterBy('isDeleted', false);
 })

The sortBy method ensures that the tickets are always ordered and this computed property thus watches the position of each of the tickets to look out for any changes. Now we can finally define the moveTicket action to enable modification of position for tickets.

moveTicket(ticket, direction) {
     const index = ticket.get('position');
     const otherTicket = this.get('data.event.tickets').find(otherTicket => otherTicket.get('position') === (direction === 'up' ? (index - 1) : (index + 1)));
     otherTicket.set('position', index);
     ticket.set('position', direction === 'up' ? (index - 1) : (index + 1));
   }

The moveTicket action takes two arguments, ticket and direction. It temporarily stores the position of the current ticket and the position of the ticket which needs to be swapped with the current ticket.Based on the direction the positions are swapped. Since the position of each of the tickets is being watched by the tickets computed array, the change in order becomes apparent immediately.

Now when the User will trigger the save request, the positions of each of the tickets will be updated via a PATCH or POST (if the ticket is new) request.

Also, the positions of all the tickets maybe affected while adding a new ticket or deleting an existing one. In case of a new ticket, the position of the new ticket should be initialised while creating it and it should be below all the other tickets.

addTicket(type, position) {
     const salesStartDateTime = moment();
     const salesEndDateTime = this.get('data.event.startsAt');
     this.get('data.event.tickets').pushObject(this.store.createRecord('ticket', {
       type,
       position,
       salesStartsAt : salesStartDateTime,
       salesEndsAt   : salesEndDateTime
     }));
   }

Deleting a ticket requires updating positions of all the tickets below the deleted ticket. All of the positions need to be shifted one place up.

removeTicket(deleteTicket) {
     const index = deleteTicket.get('position');
     this.get('data.event.tickets').forEach(ticket => {
       if (ticket.get('position') > index) {
         ticket.set('position', ticket.get('position') - 1);
       }
     });
     deleteTicket.deleteRecord();
   }

The tickets whose position is to be updated are filtered by comparison of their position from the position of the deleted ticket.

Resources

Implementing Order Statistics API on Tickets Route in Open Event Frontend

The order statistics API endpoints are used to display the statistics related to tickets, orders, and sales. It contains the details about the total number of orders, the total number of tickets sold and the amount of the sales. It also gives the detailed information about the pending, expired, placed and completed orders, tickets, and sales.

This article will illustrate how the order statistics can be displayed using the Order Statistics API in Open Event Frontend. The primary end point of Open Event API with which we are concerned with for statistics is

GET /v1/events/{event_identifier}/order-statistics

First, we need to create a model for the order statistics, which will have the fields corresponding to the API, so we proceed with the ember CLI command:

ember g model order-statistics-tickets

Next, we need to define the model according to the requirements. The model needs to extend the base model class. The code for the model looks like this:

import attr from 'ember-data/attr';
import ModelBase from 'open-event-frontend/models/base';

export default ModelBase.extend({
  orders  : attr(),
  tickets : attr(),
  sales   : attr()
});

As we need to display the statistics related to orders, tickets, and sales so we have their respective variables inside the model which will fetch and store the details from the API.

Now, after creating a model, we need to make an API call to get the details. This can be done using the following:

return this.modelFor('events.view').query('orderStatistics', {});

Since the tickets route is nested inside the event.view route so, first we are getting the model for event.view route and then we’re querying order statistics from the model.

The complete code can be seen here.

Now, we need to call the model inside the template file to display the details. To fetch the total orders we can write like this

{{model.orders.total}}

 

In a similar way, the total sales can be displayed like this.

{{model.sales.total}}

 

And total tickets can be displayed like this

{{model.tickets.total}}

 

If we want to fetch other details like the pending sales or completed orders then the only thing we need to replace is the total attribute. In place of total, we can add any other attribute depending on the requirement. The complete code of the template can be seen here.

The UI for the order statistics on the tickets route looks like this.

Fig. 1: The user interface for displaying the statistics

The complete source code can be seen here.

Resources:

Implementing Pages API in Open Event Frontend

The pages endpoints are used to create static pages which such as about page or any other page that doesn’t need to be updated frequently and only a specific content is to be shown. This article will illustrate how the pages can be added or removed from the /admin/content/pages route using the pages API in Open Event Frontend. The primary end point of Open Event API with which we are concerned with for pages is

GET /v1/pages

First, we need to create a model for the pages, which will have the fields corresponding to the API, so we proceed with the ember CLI command:

ember g model page

Next, we need to define the model according to the requirements. The model needs to extend the base model class. The code for the page model looks like this:

import attr from 'ember-data/attr';
import ModelBase from 'open-event-frontend/models/base';

export default ModelBase.extend({
  name        : attr('string'),
  title       : attr('string'),
  url         : attr('string'),
  description : attr('string'),
  language    : attr('string'),
  index       : attr('number', { defaultValue: 0 }),
  place       : attr('string')
});

As the page will have name, title, url which will tell the URL of the page, the language, the description, index and the place of the page where it has to be which can be either a footer or an event.

The complete code for the model can be seen here.

Now, after creating a model, we need to make an API call to get and post the pages created. This can be done using the following:

return this.get('store').findAll('page');

The above line will check the store and find all the pages which have been cached in and if there is no record found then it will make an API call and cache the records in the store so that when called it can return it immediately.

Since in the case of pages we have multiple options like creating a new page, updating a new page, deleting an existing page etc. For creating and updating the page we have a form which has the fields required by the API to create the page.  The UI of the form looks like this.

Fig. 1: The user interface of the form used to create the page.

Fig. 2: The user interface of the form used to update and delete the already existing page

The code for the above form can be seen here.

Now, if we click the items which are present in the sidebar on the left, it enables us to edit and update the page by displaying the information stored in the form and then the details be later updated on the server by clicking the Update button. If we want to delete the form we can do so using the delete button which first shows a pop up to confirm whether we actually want to delete it or not. The code for displaying the delete confirmation pop up looks like this.

<button class="ui red button" 
{{action (confirm (t 'Are you sure you would like to delete this page?') (action 'deletePage' data))}}>
{{t 'Delete'}}</button>

 

The code to delete the page looks like this

deletePage(data) {
    if (!this.get('isCreate')) {
      data.destroyRecord();
      this.set('isFormOpen', false);
    }
  }

In the above piece of code, we’re checking whether the form is in create mode or update mode and if it’s in create mode then we can destroy the record and then close the form.

The UI for the pop up looks like this.

Fig.3: The user interface for delete confirmation pop up

The code for the entire process of page creation to deletion can be checked here

To conclude, this is how we efficiently do the process of page creation, updating and deletion using the Open-Event-Orga pages API  ensuring that there is no unnecessary API call to fetch the data and no code duplication.

Resources:

Implementing Event Copy API in Open Event Frontend

In Open Event Frontend, we give the organizer a facility to create a copy of the event by copying it and making the modifications he wants to a particular event. Thus, it is easy for the organizer to create multiple events with same sponsors, sessions, etc. For this, we implemented the event copy API in frontend.
We achieved the copy of events as follows:
Since the event copy API is application/json type, we used the simple GET and POST requests to copy the event rather than using the ember data. For this, we use the loader service which is injected throughout the app. To copy the event we have given a “Copy” button which looks as follows:

 <button class="ui button {{if isCopying 'loading'}}" {{action 'copyEvent'}} disabled={{isCopying}}>
    <i class="copy icon"></i>
        {{t 'Copy'}}
 </button>

Thus, we trigger an action ‘copyEvent’ on clicking the Copy button. The action is defined in controller as follows:

 copyEvent() {
      this.set('isCopying', true);
      this.get('loader')
        .post(`events/${this.get('model.id')}/copy`, {})
        .then(copiedEvent => {
          this.transitionToRoute('events.view.edit', copiedEvent.identifier);
          this.get('notify').success(this.l10n.t('Event copied successfully'));
        })
        .catch(() => {
          this.get('notify').error(this.l10n.t('Copying of event failed'));
        })
        .finally(() => {
          this.set('isCopying', false);
        });
    }

The endpoint to copy the event as defined in our API is:

POST : /v1/events/{identifier}/copy
Content-Type: application/vnd.api+json
Authorization: JWT <Auth Key>
Request body: {}

Thus, we make a post request to the given URL by passing the event id of the event to be copied and the request body to be an empty object. Thus, on successful response from the server, we get the new event id for which the event info is same. We then redirect the user to the edit details route where he can change the info he wants.
Thus, we copy the event in Open Event Frontend.

Resources: Docs on loader service in Ember JS