Receiving Data From the Network Asynchronously

We often need to receive information from networks in Android apps. Although it is a simple process but the problem arises when it is done through the main user interaction thread. To understand this problem better consider using an app which shows some text downloaded from the online database. As the user clicks a button to display a text it may take some time to get the HTTP response. So what does an activity do in that time? It creates a lag in the user interface and makes the app to stop responding. Recently I implemented this in Connfa App to download data in Open Event Format.

To solve that problem we use concurrent thread to download the data and send the result back to be processed separating it from main user interaction thread. AsyncTask allows you to perform background operations and publish results on the UI thread without having to manipulate threads and/or handlers.

AsyncTask is designed to be a helper class around Thread and Handler and does not constitute a generic threading framework. AsyncTasks should ideally be used for short operations (a few seconds at the most). If you need to keep threads running for long periods of time, it is highly recommended you use the various APIs provided by the java.util.concurrent package such as Executor, ThreadPoolExecutor and FutureTask.

An asynchronous task is defined by a computation that runs on a background thread and whose result is published on the UI thread. An asynchronous task is defined by 3 generic types, called Params, Progress and Result, and 4 steps, called onPreExecute, doInBackground, onProgressUpdate and onPostExecute.

In this blog, I describe how to download data in an android app with AsyncTask using OkHttp library.

First, you need to add dependency for OkHttp Library,

compile 'com.squareup.okhttp:okhttp:2.4.0' 


Extend AsyncTask class and implement all the functions in the class by overriding them to modify them accordingly. Here I declare a class named AsyncDownloader extending AsyncTask. We took the string parameter, integer type progress and string type result to return instead which will be our JSON data and param is our URL. Instead of using get the function of AsyncTask we implement an interface to receive data so the main user interaction thread does not have to wait for the return of the result.

public class AsyncDownloader extends AsyncTask<String, Integer, String> {
    private String jsonData = null;

    public interface JsonDataSetter {
        void setJsonData(String str);
    }


    JsonDataSetter jsonDataSetterListener;

    public AsyncDownloader(JsonDataSetter context) {

        this.jsonDataSetterListener = context;
    }

    @Override
    protected void onPreExecute() {
        super.onPreExecute();
    }

    @Override
    protected String doInBackground(String... params) {

        String url = params[0];

        OkHttpClient client = new OkHttpClient();
        Request request = new Request.Builder()
                .url(url)
                .build();
        Call call = client.newCall(request);

        Response response = null;

        try {
            response = call.execute();

            if (response.isSuccessful()) {
                jsonData = response.body().string();

            } else {
                jsonData = null;
            }

        } catch (IOException e) {
            e.printStackTrace();
        }


        return jsonData;
    }

    @Override
    protected void onPostExecute(String jsonData) {
        super.onPostExecute(jsonData);
        jsonDataSetterListener.setJsonData(jsonData);
    }
}


We download the data in doInBackground making a request using OkHttp library and send the result back in onPostExecute method using our interface method. See above to check out the complete class implementation.

You can make an instance to AsyncDownloader in an activity. Implement interface to receive that data.

Tip: Always close AsyncTask after using to avoid many concurrent tasks at one time.

Find the complete code here.

References:

Upgrading the Style and Aesthetic of an Android App using Material Design

I often encounter apps as I add Open Event format support that don’t follow current design guidelines. Earlier styling an app was a tough task as the color and behaviour of the views needed to be defined separately. But now as we move forward to advanced styling methods we can easily style our app.

I recently worked on upgrading the user interface of Giraffe app after adding our Open Event support. See the repository to view the code for more reference. Here I follow the same procedure to upgrade the user interface.

First we add essential libraries to move with our material aesthetic. The Appcompat library provides backward compatibility.

//Essential Google libraries
compile 'com.android.support:appcompat-v7:25.3.1'
compile 'com.android.support:design:25.3.1

Then we define an XML file in the values folder for the style of the app which we get through Appcompat library. We could inherit same style in the entire app or separate style for the particular activity.

<resources>

   <!-- Base application theme. -->
   <style name="AppTheme" parent="Theme.AppCompat.Light.NoActionBar">
       <!-- Customize your theme here. -->
       <item name="colorPrimary">@color/colorPrimary</item>
       <item name="colorPrimaryDark">@color/colorPrimaryDark</item>
       <item name="colorAccent">@color/colorAccent</item>
   </style>


   <style name="AlertDialogCustom" parent="Theme.AppCompat.Light.Dialog.Alert">
       <item name="colorPrimary">@color/colorPrimary</item>
       <item name="colorAccent">@color/colorAccent</item>
   </style>

</resources>

So now we can see the views made following the same color scheme and behaviour throughout the app following current design guidelines without any particular manipulation to each of them.

Tip: Don’t define values of colors separately for different views. Define them in colors.xml to use them everywhere. It becomes easier then to change in future if needed.

The app now uses Action Bar for the frequently used operations unlike the custom layout that was made earlier.

This is how Action Bar is implemented,

First declare the action bar in XML layout,

Tip: Define color of the bar two shades lighter than the status bar.

 <android.support.design.widget.AppBarLayout
             android:layout_width="match_parent"
             android:layout_height="wrap_content"
             android:background="@android:color/transparent"
             android:theme="@style/ThemeOverlay.AppCompat.Dark.ActionBar">
             <android.support.v7.widget.Toolbar

                 xmlns:app="http://schemas.android.com/apk/res-auto"         
                 android:id="@+id/toolbar_options"
                 android:layout_width="match_parent"
                 android:layout_height="?attr/actionBarSize"
                 android:background="@color/colorPrimary"
                 app:popupTheme="@style/ThemeOverlay.AppCompat.Dark">
                 
                 <TextView
                     android:layout_width="wrap_content"
                     android:layout_height="wrap_content"
                     android:text="@string/options"
                     android:textColor="@color/colorAccent"
                     android:textSize="20sp" />
              </android.support.v7.widget.Toolbar>

</android.support.design.widget.AppBarLayout>

Then you can use the action bar in the activity, use onCreateOptionsMenu() method to inflate options in the toolbar.

@Override
    public void onCreate(Bundle savedInstanceState) {
        ...

        setTitle("");
        title = (TextView) findViewById(R.id.titlebar);
        Toolbar toolbar = (Toolbar) findViewById(R.id.toolbar_main);
        setSupportActionBar(toolbar);

        ...
    }

The menu that needs to be inflated will be like this for two button at the right end of the action bar for bookmarks and filter respectively,

<menu xmlns:android="http://schemas.android.com/apk/res/android"
      xmlns:app="http://schemas.android.com/apk/res-auto">
     <item
        android:id = "@+id/action_bookmark"
        android:icon = "@drawable/ic_bookmark"
        android:menuCategory = "secondary"
        android:title = "Bookmark"
        app:showAsAction = "ifRoom" />
 
     <item
         android:id = "@+id/action_filter"
         android:icon = "@drawable/ic_filter"
         android:menuCategory = "secondary"
         android:title = "Filter"
         app:showAsAction = "ifRoom" />
</menu>

To adapt the declared style further, Alert Dialogs are also modified to match the app’s theme, it’s style is defined along with the app’s style. See below

AlertDialog.Builder noFeedBuilder = new AlertDialog.Builder(context,R.style.AlertDialogCustom);
            noFeedBuilder.setMessage(R.string.main_no_feed_text)
                    .setTitle(R.string.main_no_feed_title)
                    .setPositiveButton(R.string.common_yes, new DialogInterface.OnClickListener() {
                  ...
            noFeedBuilder.show();

Here is an example of improvement, before and after we update the user interface and aesthetic of app in easy steps defined,

   

See this for all the changes made to step up the user interface of the app.

References:

 

Create an App Widget for Bookmarked Sessions for the Open Event Android App

What is an app widget?

App Widgets are miniature application views that can be embedded in other applications (such as the Home screen) and receive periodic updates. These views are referred to as Widgets in the user interface, and you can publish one with an App Widget provider. – (Android Documentation).

Android widget is an important functionality that any app can take advantage of. It could be used to show important dates, things that the user personalizes on the app etc. In the context of the Open Event Android App, it was necessary to create a bookmark widget for the Android phones so that the user could see his bookmarks on the homescreen itself and need not open the app for the same. In the open event android app, the widget was already created but it needed bug fixes and UI enhancements due to migration to the Realm database migration. Therefore, my majority of work circled around that.

Implementation

Declare the app widget in the manifest. All the updates in the application would be received by the class which extends the AppWidgetProvider if it needs to be reflected in the widget.

<receiver
   android:name=".widget.BookmarkWidgetProvider"
   android:enabled="true"
   android:label="Bookmarks">
   <intent-filter>
       <action android:name="android.appwidget.action.APPWIDGET_UPDATE" />
       <action android:name="${applicationId}.ACTION_DATA_UPDATED" />
       <action android:name="${applicationId}.UPDATE_MY_WIDGET" />
   </intent-filter>
   <meta-data
       android:name="android.appwidget.provider"
       android:resource="@xml/widget_info" />
</receiver>

 

Create a layout for the widget that is to be displayed on the homescreen. Remember to use only the views defined in the documentation. After the creation of the layout, create a custom widget updater which will broadcast the data from the app to the receiver to update the widget.

public class WidgetUpdater {
   public  static  void updateWidget(Context context){
       int widgetIds[] = AppWidgetManager.getInstance(context.getApplicationContext()).getAppWidgetIds(new ComponentName(context.getApplicationContext(), BookmarkWidgetProvider.class));
       BookmarkWidgetProvider bookmarkWidgetProvider = new BookmarkWidgetProvider();
       bookmarkWidgetProvider.onUpdate(context.getApplicationContext(), AppWidgetManager.getInstance(context.getApplicationContext()),widgetIds);
       context.sendBroadcast(new Intent(BookmarkWidgetProvider.ACTION_UPDATE));
   }
}

 

Next, create a custom RemoteViewService to update the views in the widget. The reason this is required is because the app widget does not operate in the usual lifecycle of the app. And therefore a remote service is required which acts as the remote adapter to connect to the remote views. In your class, override the onGetViewFactory() method and create a new remoteViewsFactory object to get the the data from the app on updation of the bookmark list. To populate the remote views, override the getViewsAt() method.

public class BookmarkWidgetRemoteViewsService extends RemoteViewsService {

@Override
public RemoteViewsFactory onGetViewFactory(Intent intent) {

return new RemoteViewsFactory() {
   private MatrixCursor data = null;

   @Override
   public void onCreate() {
       //Called when your factory is first constructed.
   }

   @Override
   public void onDataSetChanged() {
       }

   @Override
   public RemoteViews getViewAt(int position) {
       } 
   }
}

 

Finally, create a custom AppWidgetProvider which parses the relevant fields out of the intent and updates the UI. It acts like a broadcast receiver, hence all the updates by the widgetUpdater is received here.

public class BookmarkWidgetProvider extends AppWidgetProvider {

   public void onUpdate(Context context, AppWidgetManager appWidgetManager, int[] appWidgetIds) {
	  RemoteViews views = new RemoteViews(context.getPackageName(), R.layout.bookmark_widget);
             setRemoteAdapter(context, views);

   }

   @Override
   public void onReceive(@NonNull Context context, @NonNull Intent intent) {
       super.onReceive(context, intent);
   }

   private void setRemoteAdapter(Context context, @NonNull final RemoteViews views) {
       views.setRemoteAdapter(R.id.widget_list,
               new Intent(context, BookmarkWidgetRemoteViewsService.class));
   }

}

 

Conclusion

For any event based apps, it is crucial that it regularly provide updates to its users and therefore app widget forms an integral part of that whole experience.

References

 

 

Adding Event Overview Route in Open Event Frontend

In Open Event Frontend we have an event overview route which is like a mini dashboard for an event where information regarding event sponsors, general info, roles, tickets, event setup etc. is present. All of the information is present in their corresponding components and this dashboard is made up of those components. To create this dashboard we will first create its components.

To create a component we will use following ember command-

ember -g component <component-name>

This command will give us three files: a template, a component and a test file corresponding to that component. We will use this command to generate all our components.

Now let’s discuss each component separately and see how many of them are combined to form this route-

The event-setup-checklist component contains semantic ui’s steps to maintain checklist of basic-details, sponsors, session & microlocation, call for speakers, session and speakers form customization so that it becomes easy to identify which step is complete and which is not.

Next is general-info component which shows basic information about an event like start-time, end-time, location, number of speakers, number of sponsors etc. It also shows whether the event is live or not.

In manage-roles component, manage the role for a given person, add people and assign different roles to them, edit roles for different people. Also we can see who are invited for a given role and who accepted them.

In event-sponsors component we manage the sponsors for the event, edit an existing sponsor, add a new sponsor with their logo, name, type and level. Also we can delete an existing sponsor.

Next is the ticket component which displays the details of number of orders, number of tickets sold, and total sales. Also it displays the number of types of tickets are sold.

Next is our app-component which has two choices. First is to generate android app for the event and second is to generate webapp of the event.

And finally in our view.index template, we add these components using ui stackable grid layout. Whenever we want to conditionally show or hide a component, we can do that in our event.index template and hence it becomes very easy to manage huge amounts content on a single page.

Resources

Implementing Attendee Detail BottomSheet UI in Open Event Orga App

In Open Event Orga App (Github Repo), we allow the option to check the attendee details before checking him/her in or out. Originally, a dialog was shown showing the attendee details, which did not contain much information about the attendee, ticket or the order. The disadvantage of such design was also that it was tied to only one view. We couldn’t show the check in dialog elsewhere in the app, like during QR scanning. So we had to switch back to the attendee view for showing the check in dialog. We decided to create a usable detached component in the form of a bottom sheet containing all required information. This blog will outline the procedure we employed to design the bottom sheet UI.

The attendee check in dialog looked like this:

So, first we decide what we need to show on the check in bottom sheet:

  • Attendee Name
  • Attendee Email
  • Attendee Check In Status
  • Order Status ( Completed, Pending, etc )
  • TIcket Type ( Free, Paid, Donation )
  • Ticket Price
  • Order Date
  • Invoice Number
  • Order ‘Paid Via’

As we are using Android Data Binding in our layout, we’ll start by including the variables required in the layout. Besides the obvious attendee variable, we need presenter instance to handle the check in and check out of the attendee and DateUtils class to parse the order date. Additionally, to handle the visibility of views, we need to include the View class too

<data>
   <import type="org.fossasia.openevent.app.utils.DateUtils" />
   <import type="android.view.View" />

   <variable
       name="presenter"
       type="org.fossasia.openevent.app.event.checkin.contract.IAttendeeCheckInPresenter" />

   <variable
       name="checkinAttendee"
       type="org.fossasia.openevent.app.data.models.Attendee" />
</data>

 

Then, we make the root layout to be CoordinatorLayout and add a NestedScrollView inside it, which contains a vertical linear layout in it. This vertical linear layout will contain our fields.

Note: For brevity, I’ll skip most of the layout attributes from the blog and only show the ones that correspond to the text

Firstly, we show the attendee name:

<TextView
   style="@style/TextAppearance.AppCompat.Headline"
   android:text='@{attendee.firstName + " " + attendee.lastName }'
   tools:text="Name" />

 

The perks of using data binding can be seen here, as we are using string concatenation in layout itself. Furthermore, data binding also handles null checks for us if we add a question mark at the end of the variable name ( attendee.firstName? ).

But our server ensures that both these fields are not null, so we skip that part.

Next up, we display the attendee email

<TextView
   android:text="@{ checkinAttendee.email }"
   tools:text="xyz@example.com" />

 

And then the check in status of the attendee

<TextView
   android:text="@{ checkinAttendee.checkedIn ? @string/checked_in : @string/checked_out }"
   android:textColor="@{ checkinAttendee.checkedIn ? @color/light_green_500 : @color/red_500 }"
   tools:text="CHECKED IN" />

 

Notice that we dynamically change the color and text based on the check in status of the attendee

Now we begin showing the fields with icons to their left. You can use Compound Drawable to achieve this effect, but we use vector drawables which are incompatible with compound drawables on older versions of Android, so we use a horizontal LinearLayout instead.

The first field is the order status denoting if the order is completed or in transient state

<LinearLayout android:orientation="horizontal">

   <ImageView app:srcCompat="@drawable/ic_transfer" />
   <TextView android:text="@{ checkinAttendee.order.status }" />
</LinearLayout>

 

Now, again for keeping the snippets relevant, I’ll skip the icon portion and only show the text binding from now on.

Next, we include the type of ticket attendee has. There are 3 types of ticket supported in Open Event API – free, paid, donation

<TextView
   android:text="@{ checkinAttendee.ticket.type }"  />

 

Next, we want to show the price of the ticket, but only when the ticket is of paid type.

I’ll include the previously omitted LinearLayout part in this snippet because it is the view we control to hide or show the field

<LinearLayout
   android:visibility='@{ checkinAttendee.ticket.type.equalsIgnoreCase("paid") ? View.VISIBLE : View.GONE }'>

   <ImageView app:srcCompat="@drawable/ic_coin" />
   <TextView
       android:text='@{ "$" + checkinAttendee.ticket.price }'
       tools:text="3.78" />
</LinearLayout>

 

As you can see, we are showing this layout only if the ticket type equals paid

The next part is about showing the date on which the order took place

<TextView
   android:text="@{ DateUtils.formatDateWithDefault(DateUtils.FORMAT_DAY_COMPLETE, checkinAttendee.order.completedAt) }" />

 

Here we are using internal DateUtils method to format the date into complete date time from the ISO 8601 standard date present in the order object

Now, we show the invoice number of the order

<TextView
   android:text="@{ checkinAttendee.order.invoiceNumber }" />

 

Lastly, we want to show how the ticket was paid for via

<LinearLayout
   android:visibility='@{ checkinAttendee.order.paidVia.equalsIgnoreCase("free") ? View.GONE : View.VISIBLE }'>

   <ImageView app:srcCompat="@drawable/ic_ray" />
   <TextView  android:text="@{ checkinAttendee.order.paidVia }" />
</LinearLayout>

 

Notice that here too we are controlling the visibility of the layout container and only showing it if the ticket type is paid

This ends our vertical linear layout showing the fields about attendee detail. Now, we add a floating action button to toggle the check in status of attendee

<FrameLayout
   android:layout_gravity="top|end">

   <android.support.design.widget.FloatingActionButton
       android:layout_gravity="center"
       android:onClick="@{() -> presenter.toggleCheckIn() }"
       app:backgroundTint="@{ checkinAttendee.checkedIn ? @color/red_500 : @color/light_green_500 }"
       app:srcCompat="@{ checkinAttendee.checkedIn ? @drawable/ic_checkout : @drawable/ic_checkin }"
       app:tint="@android:color/white" />

   <ProgressBar
       android:layout_gravity="center" />

</FrameLayout>

 

We have used a FrameLayout to wrap a FAB and progress bar together in top end of the bottom sheet. The progress bar shows the indeterminate progress of the toggling of attendee status. And you can see the click binder on FAB triggering the presenter method toggleCheckIn() and how the background color and icon change according to the check in status of the attendee.

This wraps up our layout design. Now we just have to create a BottomSheetDialogFragment, inflate this layout in it and bind the attendee variable and we are all set. The result with all fields visible looks like this:

To learn more about bottom sheet and android data binding, please refer to these links:

Create an AutocompleteTextView dropdown for the email input in the Open Event Orga Android App

In the first version of the Open Event Organizer App, the event organizer was required to enter his full email each time he logged out of his account and therefore it was hindering the user experience. AutoCompleteTextView with shared preferences is a solution to this problem. This feature provides an editable text view that shows completion suggestions automatically while the user is typing. The list of suggestions is displayed in a drop down menu. The user can choose an item to replace the content of the edit box with. It is extremely useful in enhancing user experience.

The solution we implemented was to create an autocomplete textview for the email input, store the email address of the user on a successful login in the shared preference in a set of strings to prevent duplicacy and display it in the dropdown on subsequent login attempts.

Implementation

Change your TextInputLayout structure to accommodate the autocompletetextview. Remember to create a separate autocompletetextview object with the specific id of the view.

<android.support.v7.widget.AppCompatAutoCompleteTextView
       android:id="@+id/email_dropdown"
       android:layout_width="match_parent"
       android:layout_height="wrap_content"
       android:hint="@string/email"
       android:inputType="textEmailAddress" />

 

Create Utility methods to get/store the emails in the shared preferences. The set data structure has been used here so that there is no duplicacy while storing the emails in the shared preferences.

public Set<String> getStringSet(String key, Set<String> defaultValue) {
   return sharedPreferences.getStringSet(key, defaultValue);
}

public void saveStringSet(String key, Set<String> value) {
   SharedPreferences.Editor editor = sharedPreferences.edit();
   editor.putStringSet(key, value);
   editor.apply();
}

public void addStringSetElement(String key, String value) {
   Set<String> set = getStringSet(key, new HashSet<>());
   set.add(value);
   saveStringSet(key, set);
}

 

Create helper methods to add an email and retrieve the list of emails from the shared preferences to provide it to the views.

private void saveEmail(String email) {
   utilModel.addStringSetElement(Constants.SHARED_PREFS_SAVED_EMAIL, email);
}

private Set<String> getEmailList() {
   return utilModel.getStringSet(Constants.SHARED_PREFS_SAVED_EMAIL, null);
}

 

Create an autocompleteTextView object in your activity with the help of the R id from the layout and set the adapter with the set of strings retrieved from the shared preferences. You could create a custom adapter for this case too, but as far as the Open Event Orga App was concerned, using the array adapter made sense.

autoCompleteEmail.setAdapter(new ArrayAdapter<>(this, android.R.layout.simple_list_item_1,
   new ArrayList<String>(emails)));

 

Conclusion

It is important that the user is served with the best possible experience of the application and the autocomplete text view for the email serves just that.

Resources

Maintain Aspect Ratio Mixin on Open Event Frontend

The welcome page of the Open-Event-Frontend is designed to contain cards that represent an event. A user is directed to the event-details page by clicking on the corresponding card. The page consists of an image that serves as the banner for the event and an overlapping div to provide some contrast against the image. A comment may also be added onto the image and along with the overlapping div it is wrapped in a container div.

Since we have given a specific height to the contrasting div, the background image shrinks according to the screen size but the contrasting div does not whenever we go from a large screen to a smaller screen.

Mobile view (before):-

We want our contrasting div also to resize in accordance to the image. To do it, we first define a sass mixin to maintain a common aspect ratio for image and overlapping div. Let us see it’s code.

 @mixin aspect-ratio($width, $height) {
    position: relative;
    &:before {
      display: block;
      content: "";
      width: 100%;
      padding-top: ($height / $width) * 100%;
    }
    > .content {
      position: absolute;
      top: 0;
      left: 0;
      right: 0;
      bottom: 0;
    }
    > img {
      position: absolute;
      top: 0;
      left: 0;
      right: 0;
      bottom: 0;
    }
  }

So what does this mixin actually doing is we are passing the height and width of the image and we are defining a pseudo element for our image and give it a margin top of (height/width)*100 since this value is related to image width (height: 0; padding-bottom: 100%; would also work, but then we have to adjust the padding-bottom value every time we change the width). Now we just position the content element and image as absolute with all four orientations set to 0. This just covers the parent element completely, no matter which size it has.

Now we can simply use our mixin by adding the following line of code in out container div

@include aspect-ratio(2, 1);

Here we want to maintain a 2:1 aspect ratio and the user is also expected to upload the image in the same aspect ratio. Therefore, we pass width as 2 and height as 1 to our mixin.

Now when we resize our screen both the image and the overlapping div resize maintaining 2:1 aspect ratio.

Mobile view (after):-

Resources

  • mademyday blog describes a method of using pseudo elements to maintain an element’s aspect ratio.
  • css-tricks snippet.

Image Cropper On Ember JS Open Event Frontend

In Open Event Front-end, we have a profile page for every user who is signed in where they can edit their personal details and profile picture. To provide better control over profile editing to the user, we need an image cropper which allows the user to crop the image before uploading it as their profile picture. For this purpose, we are using a plugin called Croppie. Let us see how we configure Croppie in the Ember JS front-end to serve our purpose.

All the configuration related to Croppie lies in a model called cropp-model.js.

 onVisible() {
    this.$('.content').css('height', '300px');
    this.$('img').croppie({
      customClass : 'croppie',
      viewport    : {
        width  : 400,
        height : 200,
        type   : 'square'
      },
      boundary: {
        width  : 600,
        height : 300
      }
    });
  },

  onHide() {
    this.$('img').croppie('destroy');
    const $img = this.$('img');
    if ($img.parent().is('div.croppie')) {
      $img.unwrap();
    }
  },

  actions: {
    resetImage() {
      this.onHide();
      this.onVisible();
    },
    cropImage() {
      this.$('img').croppie('result', 'base64', 'original', 'jpeg').then(result => {
        if (this.get('onImageCrop')) {
          this.onImageCrop(result);
        }
      });
    }

There are two functions: onVisible() and onHide(), which are called every time when we hit reset button in our image cropper model.

  • When a user pushes reset button, the onHide() function fires first which basically destroys a croppie instance and removes it from the DOM.
  • onVisible(), which fires next, sets the height of the content div. This content div contains our viewport and zoom control. We also add a customClass of croppie to the container in case we are required to add some custom styling. Next, we set the dimensions and the type of viewport which should be equal to the dimensions of the cropped image. We define type of cropper as ‘square’ (available choices are ‘square’ and ‘circle’). We set the dimensions of our boundary. The interesting thing to notice here is that we are setting only the height of the boundary because if we pass only the height of the boundary, the width will be will be calculated using the viewport aspect ratio. So it will fit in all the screen sizes without overflowing.

The above two functions are invoked when we hit the reset button. When the user is satisfied with the image and hits ‘looks good’ button, cropImage() function is called where we are get the resulting image by passing some custom options provided by croppie like base64 bit encoding and size of cropped image which we are set to ‘original’ here and the extension of image which is we set here as ‘.jpeg’. This function returns the image of desired format which we use to set profile image.

Resources

Addition Of Track Tags In Open Event Android App

In the Open Event Android app we only had a list of sessions in the schedule page without  knowing which track each session belonged to. There were several iterations of UI design for the same. Taking cues from the Google I/O 17 App we thought that the addition of track tags would be informative to the user.  In this blog post I will be talking about how this feature was implemented.

TrackTag Layout in Session

<Button
                android:layout_width="wrap_content"
                android:layout_height="@dimen/track_tag_height"
                android:id="@+id/slot_track"
                android:textAllCaps="false"
                android:gravity="center"
                android:layout_marginTop="@dimen/padding_small"
                android:paddingLeft="@dimen/padding_small"
                android:paddingRight="@dimen/padding_small"
                android:textStyle="bold"
                android:layout_below="@+id/slot_location"
                android:ellipsize="marquee"
                android:maxLines="1"
                android:background="@drawable/button_ripple"
                android:textColor="@color/white"
                android:textSize="@dimen/text_size_small"
                tools:text="Track" />

The important part here is the track tag was modelled as a <Button/> to give users a touch feedback via a ripple effect.

Tag Implementation in DayScheduleAdapter

All the dynamic colors for the track tags was handled separately in the DayScheduleAdapter.

final Track sessionTrack = currentSession.getTrack();
       int storedColor = Color.parseColor(sessionTrack.getColor());
       holder.slotTrack.getBackground().setColorFilter(storedColor, PorterDuff.Mode.SRC_ATOP);

       holder.slotTrack.setText(sessionTrack.getName());
       holder.slotTrack.setOnClickListener(v -> {
            Intent intent = new Intent(context, TrackSessionsActivity.class);
            intent.putExtra(ConstantStrings.TRACK, sessionTrack.getName());

            intent.putExtra(ConstantStrings.TRACK_ID, sessionTrack.getId());
            context.startActivity(intent);
      });

As the colors associated with a track were all stored inside the track model we needed to obtain the track from the currentSession. We could get the storedColor by calling getColor() on the track object associated with the session.

In order to set this color as the background of the button we needed to set a color filter with a PorterDuff Mode called as SRC_ATOP.

The name of the parent class is an homage to the work of Thomas Porter and Tom Duff, presented in their seminal 1984 paper titled “Compositing Digital Images”. In this paper, the authors describe 12 compositing operators that govern how to compute the color resulting of the composition of a source (the graphics object to render) with a destination (the content of the render target).

Ref : https://developer.android.com/reference/android/graphics/PorterDuff.Mode.html

To exactly understand what does the mode SRC_ATOP do we can refer to the image below for understanding. There are several other modes with similar functionality.

               

      SRC IMAGE             DEST IMAGE           SRC ATOP DEST

Now we also set an onClickListener for the track tag so that it directs us to the tracks Page.

So now we have successfully added track tags to the app.

Resources

GlobalSearchAdapter Setup in Open Event Android App

In this blog post I describe how the GlobalSearchAdapter in Open Event Android was made which enabled users to search quickly within the app. This post also outlines how to create Recycler Views with heterogenous layouts and explains how to write ViewHolders.

Adapter Logic

A custom adapter was built for the population of views in the Recycler View in the SearchActivity.

private List<Object> filteredResultList = new ArrayList<>();
//ViewType Constants
private final int TRACK = 0;
private final int SPEAKER = 2;
private final int LOCATION = 3;
private final int DIVIDER = 4;

The DIVIDER constant was assigned to the Result Type Header View.

In a gist all the item types such as Speaker, Track, Location, Divider etc have been designated some constants.

Getting the ItemViewType

@Override
public int getItemViewType(int position) {

   if(filteredResultList.get(position) instanceof Track){
       return TRACK;
   }
   else if(filteredResultList.get(position) instanceof String){
       return DIVIDER;
   }
   ...Similarly for other ItemTypes such as Session or Location
   else{
       return 1;
   }
}

As the filteredResultList is of type Object we can insert objects of any type into the list as Object is a superclass of all classes. We would want a view which represents a TRACK if we have an object of type Track in the filteredResultList. And similarly for the other result types we could insert objects of type LOCATION, SPEAKER types in this list. getItemViewType() basically determines the type of the item that is visible to us. If the list consists of an item of type SPEAKER, in the RecyclerView.

Speaker Item Type
Track Item Type
Divider Item Type
Location Item Type

Code for onCreateViewHolder in GlobalSearchAdapter for the Recycler View

@Override
public RecyclerView.ViewHolder onCreateViewHolder(ViewGroup parent, int viewType) {

   RecyclerView.ViewHolder resultHolder = null;
   LayoutInflater inflater = LayoutInflater.from(parent.getContext());

   switch(viewType) {
       case TRACK:
           View track = inflater.inflate(R.layout.item_track, parent,   false);
           resultHolder = new TrackViewHolder(track,context);
           break;
       case SPEAKER:
           View speaker = inflater.inflate(R.layout.search_item_speaker, parent, false);
           resultHolder = new SpeakerViewHolder(speaker,context);
           break;
       //Similarly for other types
       default:
           break;
   }
   return resultHolder;
}

Depending upon the the viewType returned the desired layout is inflated and the desired ViewHolder is returned.

Code for onBindViewHolder in GlobalSearchAdapter for the Recycler View

@Override
 public void onBindViewHolder(RecyclerView.ViewHolder holder, int position) {
 
    switch (holder.getItemViewType()){
        case TRACK:
            TrackViewHolder trackSearchHolder = (TrackViewHolder)holder;
            final Track currentTrack = (Track)getItem(position);
            trackSearchHolder.setTrack(currentTrack);
            trackSearchHolder.bindHolder();
            break;
         //Similarly for all the other View Types
        default:
            break;
    }
 }

These functions are being used to bind the data to the layouts that have been inflated already in the earlier snippet of code of onCreateViewHolder.

The bindHolder functions of each ViewHolder type are being used to do the view binding i.e converting the information in the Object Track into what we see in the TrackViewHolder as seen in TrackViewFormat.

All ViewHolders have been defined as separate classes in order to enable re usability of these classes.

ViewHolder Implementation

There are 4 main ViewHolders that were made to enable such a search. I’ll be talking about the TrackViewHolder in detail.

public class TrackViewHolder extends RecyclerView.ViewHolder {
    
    @BindView(R.id.imageView)
    ImageView trackImageIcon;
    @BindView(R.id.track_title)
    TextView trackTitle;
    @BindView(R.id.track_description)
    TextView trackDescription;
 
    private Track currentTrack;
    private Context context;
    private TextDrawable.IBuilder drawableBuilder = TextDrawable.builder().round();
 
    public void setTrack(Track track) {
        this.currentTrack = track;
    }
 
    public TrackViewHolder(View itemView,Context context) {
        super(itemView);
        ButterKnife.bind(this, itemView);
        this.context = context;
    }
    public void bindHolder(){
 
        //Set all Views to their correct configurations
        itemView.setOnClickListener(new View.OnClickListener() {
            @Override
            public void onClick(View v) {
                Intent intent = new Intent(context,   TrackSessionsActivity.class);
                intent.putExtra(ConstantStrings.TRACK,   currentTrack.getName());
 
                // Send Track ID to Activity to leverage color cache
                intent.putExtra(ConstantStrings.TRACK_ID,   currentTrack.getId());
                context.startActivity(intent);
            }
        });
} }

Those @BindView annotations that we can see are the result of a library called as Butterknife which is used to reduce standard boilerplate findViewById lines.

@BindView(R.id.imageView) ImageView trackImageIcon;
IS THE SAME AS THIS  
ImageView trackImageIcon = (ImageView)findViewById(R.id.imageView);

The advantage of such a ViewHolder is that it knows what kind of data it stores as compared to traditional ViewHolders which do not know the kind of data it stores.

By making ViewHolders separate from the RecyclerViewAdapter we are essentially decoupling classes and are enabling reusability of code. Also we make the ViewHolder a bit more intelligent by storing the object it binds in the ViewHolder itself. In the above example we are storing an object of Track which is bind to the ViewHolder. We also see that we do the view binding inside the viewholder itself. All this helps us to reduce code inside the adapter class.

A recent addition to the app was custom colors for all TRACKS in the app that improved the visual feel of the app. So basically, for example if a SESSION has been associated with the track of Blockchain it would be given a color such as purple. onClickListeners are also being set with some extras which are self-descriptive in nature. Similarly the other ViewHolders have been implemented.

Resources